

A32A-03

Assessing China's Methane Emissions with Surface and Satellite Observations

Yuzhong Zhang^{#*} (zhangyuzhong@westlake.edu.cn)

With:

Shuangxi Fang[#], Miao Liang^{*}, Jianmeng Chen^{*}, Yi Lin, Yuanyuan Chen, Ruosi Liang, Ke Jiang, Wanqi Sun, Robert Parker, Hartmut Boesch, Jian-Xiong Sheng, Xiao Lu, Shaojie Song, Shushi Peng

Group Website

Acknowledgement

Collaborators

Shuangxi Fang Yi Lin, Yuanyuan Chen

Miao Liang Wanqi Sun

Robert Parker, Hartmut Boesch Jian-Xiong Sheng (MIT), Xiao Lu (Sun Yat-sen), Shaojie Song (Harvard), Shushi Peng (PKU), Ruosi Liang (Westlake), Ke Jiang (Westlake)

Funding

Ministry of Science and Technology of China National Key Research and Development Program of China (2020YFA0607502) National Natural Science Foundation of China

Project 42007198

Methane emissions in China

Country with the largest anthropogenic emissions

Trends in China's methane emissions

Bottom-up inventory

Provincial-level activity data

Changes may not be accounted for in the bottom-up inventories

Coarse resolution Inaccurate prior sectoral distribution

Uncertainty in sectoral distribution

Affect inference of methane fluxes as well as sector attribution

Distribution of coal mine emissions from different bottom-up inventories

Sheng et al. (2021) derived a trend (0.4 Tg a⁻²) smaller than Miller et al. (2019) (1.1 Tg a⁻²)

Joint inversion of satellite & surface observations

Observations – satellite + surface network (2010-2017)

- GOSAT CO₂ proxy retrieval from University of Leicester
- Surface observation
 Ann
- Mainland China CMA 7 sites
 - ◆ Surrounding area WDCGG 6 sites

Better spatial coverage

Better measurement precision Better sensitivity to surface emissions

Zhang et al. in prep

Bottom-up estimates

Multiple anthropogenic emission inventories are used as prior for (sensitivity) inversions to explore uncertainties

Name	Anthropogenic emissions	Emissions (Tg a ⁻¹)	Trend (Tg a ⁻²)
E1	EDGAR v4.3.2 for 2012, except for coal (Sheng et al., 2019)	59	0
E2	PKU 2010-2017	49	-0.3
E3	EDGAR v5.0 2010-2015	60	+0.4
E4	CEDS v2021-04-21	51	+0.2

Natural emissions are not perturbed in the ensemble

Natural	Wetland	WETCHARTs
Emissions	Biomass burning	GFED4
	Geological seeps	Maasakkers et al.
	Termites	Fung et al.

China's methane emissions and emission trends

2010-2017 mean methane emissions

2010-2017 methane emission trends

Zhang et al. in prep

Added value of surface observations

Surface observations provide additional constraints, particularly over South, East and Northeast China

13

Sectoral attribution of inferred trends, 2010-2017

Compare inversion of GOSAT and TROPOMI data

Do TROPOMI and GOSAT provide consistent inversion results? How does the TROPOMI bias correction affect emission inference? Does TROPOMI help resolve finer spatial distribution?

Ruosi Liang

Mean bias corrected TROPOMI methane in 2019

Inversion TROPOMI

Inversion GOSAT

Consistent: NEC, CSC, BAN

Inconsistent: KAZ, XJC, IND, EC

Impact of post bias correction for TROPOMI inversion

Inversion T1 (bias-corrected)

Inversion T4 (un-corrected)

kg/m2/s

Comparison of inversion results: KAZ

There appears to be other factors that needs to be included in the bias correction

14

- Joint inversion of surface and satellite data to infer China's methane emissions during 2010-2017.
- Surface observations add more information to satellite data, especially over southern and northeastern China.
- Unexpected increase in rice cultivation regions; uncertain & divergent trends from the coal sector.
- TROPOMI and GOSAT inversions show generally consistent correction patterns though with varied details

