

- climate, and nutrition deposition.
- <u>SOURCES</u>.
- of global NH₃ emission fluxes utilizing IASI (Infrared GEOS-Chem chemistry transport model simulations.

Data and methods

- number of retrievals

- overridden by regional inventories

Conclusion

- emission is 79 (71-96) Tg a⁻¹, \sim 30% higher than the bottom-up estimates.
- by 40-70%, but reasonably agrees with our top-down estimates over the U.S. and Europe.
- likely resulting from the intensified agricultural activities in these regions in the past decade.

Estimating ammonia (NH₃) emissions based on IASI observations from 2008 to 2018

Zhenqi Luo^{1,2}, Yuzhong Zhang², Ying Sun¹

¹School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, NY, US. Contact: <u>z1725@cornell.edu</u> ²Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China

• This study provides a top-down estimate of NH_3 fluxes constrained by IASI observations for 2008-2018. The global land NH_3

• At the regional scale, the bottom-up inventory underestimates NH₃ emission over South America, tropical Africa, and eastern China

• There are significant increases in eastern China (61% decade⁻¹), tropical Africa (33% decade⁻¹), and South America (18% decade⁻¹),

Acknowledgement

- This study is supported by (Yuzhong's fundin and Cornell Institute of Digital Agriculture.
- We thank Mr. Wei Chen (Westlake University for helping simulating the GEOS-Chem mode and Dr. Peter Hess (Cornell University) for providing constructive suggestions.

Reference

ng)	• Van Damme, M., Clarisse, L., Whitburn, S., Hadji-Lazaro, J., Hurtmans, D., Clerbaux, C., & Coheur, P. F. (2018). Industrial and agricultural ammonia point sources exposed. Nature, 564(7734), 99-
V)	103.
lel	• Evangeliou, Nikolaos, et al. "10-year satellite-constrained fluxes of ammonia improve performance of chemistry transport models."

Atmospheric Chemistry and Physics 21.6 (2021): 4431-4451. Jacob, Daniel J. Introduction to atmospheric chemistry. Princeton University Press, 1999.