

Estimating global and China's methane emissions and their trends with satellite and surface observations

Yuzhong Zhang^{#*} (zhangyuzhong@westlake.edu.cn)

AOGEO TG3 Meeting, September 1, 2022

Acknowledgement

Shuangxi Fang Yi Lin, Yuanyuan Chen

Daniel J. Jacob

Robert Parker, Hartmut Boesch

Xiao Lu

し 西湖大学 Ruosi Liang

Joannes D. Maasakkers Alba Lorente, Ilse Aben

Jian-Xiong Sheng (MIT), Shaojie Song (Nankai), Shushi Peng (PKU), Minqiang Zhou, Pucai Wang (CAS)

Funding

National Natural Science Foundation of China

Project 42007198 Ministry of
Science and
Technology of
ChinaN

National Key Research and Development Program of China (2020YFA0607502)

Greenhouse gas methane (CH₄)

Radiative forcing

Increases in last 40 years

IPCC AR6 2021

https://gml.noaa.gov/ccgg/trends_ch4/

Global and China's methane emissions

Based on bottom-up inventories

Critical role of atmospheric observations in quantifying methane emissions

- Multiple source sectors are challenging to model from bottom up
- Complex dependence on environmental conditions

- Fugitive emissions
- Large spatial and temporal variations

Oil/Gas Field

Rice Paddies

Wetlands

Inverse analysis of satellite and surface observations

Liang et al., in review

Global methane inversion of GOSAT observations, 2010-2018

Zhang et al., Atmos. Chem. Phys., 2021

Global methane inversion, 2010-2018 emission trends

2010-2018 Anthropogenic emission trends

Zhang et al., Atmos. Chem. Phys., 2021

Satellite vs. ground network: Complementarity

Observation constraints measured by averaging kernel sensitivity

Ground network/aircraft (ObsPack)

Satellite observations (GOSAT)

\triangleleft					
0.0	0.2	0.4	0.6	0.8	1.0

0=no information from obs. 1=fully constrained by obs.

Lu et al., Atmos. Chem. Phys., 2021

Joint inversion of satellite and surface observations for China

2010–2017 mean methane emissions

GOSAT CO₂ proxy retrievals + 13 surface sites in China and surrounding regions

Northeast North East Central Southwest Mg km⁻² a⁻¹ Mg km⁻² a⁻² 50 0.0 10 20 30 40 -0.8-0.40.4 0.8 55 Tg a⁻¹ 0.7 (0.45-0.85) Tg a⁻² National sum

Zhang et al., PNAS, in press

Spatially contrasting trends in coal emissions, 2010-2017

Emission trends attributed to coal mining

Prior inventory • E1 • E2 • E3 • E4

Zhang et al., PNAS, in press

Spatially contrasting trends in coal emissions, 2010-2017

2010-2017 methane emission trends attributed to coal

Production in Shanxi and Shaanxi overall keeps flat with a slight increase, contributing a positive emission trend in northern Shanxi.

Expansion of coalbed methane production in Qinshui Basin (沁水盆地:阳 泉, 晋城; Largest CBM production basin in China, >60%) in southeastern Shanxi contributes to the negative emission trend.

Decrease in Southwest China is consistent with close-off of small coal

Negative trend in Henan is consistent with rapidly decreasing coal production (-9.4% a⁻¹)

Zhang et al., PNAS, in press

Lack of validation & evaluation for satellite data over China

Do **TROPOMI** and GOSAT provide consistent inversion results? Full-physics retrieval CO₂-proxy retrieval

Mean bias corrected TROPOMI methane in 2019

Liang et al., ACP, in review

Ruosi Liang

Mean GOSAT methane in 2019

GOSAT Inversion

Liang et al., ACP, in review

Independent observations for evaluation

CARIBIC Commercial aircraft data in the troposphere

Posterior simulations serve as an intercomparison platform for comparison to observations

Liang et al., ACP, in review

Biases against independent observations (posterior simulation – observation, ppbv)

Independent observations support the GOSAT inversion than TROPOMI in East China

Data archival

Global inversion: https://doi.org/10.57760/sciencedb.02328 China inversion: https://doi.org/10.57760/sciencedb.02269

Summary

	Η	
H	0	H
	H	

- Global and national methane emissions and trends can be constrained by inversion of atmospheric observations
- Satellite and surface observations are supplementary to provide observational constraints
- Increases in livestock emissions in South Asia, Africa, and South America are inferred from the global analysis
- Trends in coal emission in China shows spatially contrasting patterns, consistent with changes in production at the provincial level
- TROPOMI and GOSAT inversions inconsistent over eastern China (retrieval difference)