Converging evidence for reduced global atmospheric oxidation in 2020

Wei Chen¹, Yuzhong Zhang^{1*}, Ruosi Liang¹ ¹School of Engineering, Westlake University

contact: chenwei@westlake.edu.cn

Research background

- The hydroxyl radical (OH) plays a central role in the oxidation of methane and many other reduced gases in the Earth's atmosphere
- There is a debate on the drivers of the extreme methane growth in 2020 (emissions vs OH)
 - We present an observation-based multi-species analysis to investigate the anomaly of atmospheric oxidation in 2020

Annual Meeting

Reduced 2020 global OH inferred from atmospheric observation

• A new method to infer OH from satellite observation of carbon monoxide (CO)

Attribution of reduced 2020 OH concentration

- COVID-19 lockdown leads to a OH reduction in the NH
- Australian fire leads to a OH reduction in the SH
- Consistent with inference from satellite CO observation

- CO proxy finds a reduction of OH by $3.8 \pm 0.9\%$ in 2020
- Consistent with traditional proxy (MCF, HFC/HCFC)
- OH decreases in both Northern Hemisphere (NH) and Southern Hemisphere (SH)

- Contrasting OH-O₃ relationship in different hemispheres
- O₃ observation support the OH reduction to suppress human emission and enhanced fire emissions

Mechanism for chemical responses to COVID-19 lockdown

and Australian fire
Australian Fire

Implication for methane growth in 2020

Conclusions

- Explain the methane surge in 2020
- Better capture the hemispheric methane growth

- Multiple observations provide converging evidence for the reduced global atmospheric oxidation in 2020
- Atmospheric chemistry simulations suggest OH reduced in NH to COVID-19 lockdown and in SH to the extreme Australian fire
- The reduced global OH is the main driver for the rapid methane increase in 2020

Acknowledgement

• This work was supported by the National Science Foundation of China (grant 42275112 to Yuzhong Zhang)