

Observed changes in China's methane emissions linked to policy drivers

Yuzhong Zhang^{#*} (zhangyuzhong@westlake.edu.cn)

With:

Shuangxi Fang, Jianmeng Chen, Yi Lin, Yuanyuan Chen, Ruosi Liang, Ke Jiang, Robert Parker, Hartmut Boesch, Martin Steinbacher, Jian-Xiong Sheng, Xiao Lu, Shaojie Song, Shushi Peng

EGU General Assembly 2023, Vienna, Austria

Methane emissions in China

Anthropogenic emissions by country and region

Methane emission sector distribution in China

Estimate of China's methane emissions

Bottom-up inventory

Liu et al., 2021

Observation-based inversion

Inverse analysis for China's methane emissions

Observations – satellite + surface network (2010-2017)

- GOSAT CO₂ proxy retrieval from University of Leicester

- Surrounding area WDCGG 6 sites

3

Better spatial coverage

Better measurement precision Better sensitivity to surface emissions

Observational constraints on regional emissions

Number of independent pieces of information constrained

DOFS more than doubled for emission trends of Northeast and East China

Joint inversion of satellite and surface observations for China

Zhang et al., PNAS, 2022

Data repository: Optimized monthly emission fluxes on 0.5x0.6 grid (2010-2017)

https://doi.org/10.57760/sciencedb.02269

Emission trend linked to energy, agricultural, environmental policy

9

Emission trend linked to energy, agricultural, environmental policy

2010-2017 rice methane trend

Mg km⁻²
$$a^{-2}$$
 -0.8 -0.4 0.0 0.4 0.8

Unexpected increase as no changes in cultivation area

- Overlap spatially with aquaculture?
- Increased intensity due to more straw return?

Data source: G. Zhang 2011; Z. Shi 2016

TROPOMI Inversion

GOSAT Inversion

Liang et al., ACP, in review

Summary

 China's methane emissions and trends can be constrained at the subnational level by joint inversion of satellite and surface observations

 Regional trends linked to energy, agricultural, and environmental policies can be observed by atmospheric observations, demonstrating the usefulness for such a system to track regional methane emissions.

Acknowledgement

Shuangxi Fang Yi Lin, Yuanyuan Chen

Daniel J. Jacob

Robert Parker, Hartmut Boesch

Xiao Lu

Joannes D. Maasakkers Alba Lorente, Ilse Aben

Jian-Xiong Sheng (MIT), Shaojie Song (Nankai), Shushi Peng (PKU), Minqiang Zhou, Pucai Wang (CAS)

Funding

National Natural Science Foundation of China

Project 42007198 Ministry of
Science and
Technology of
ChinaN
al
P

National Key Research and Development Program of China (2020YFA0607502)