

Quantification of China's Methane Emissions Based on GOSAT and TROPOMI Satellite Observations

Yuzhong Zhang[#]* (zhangyuzhong@westlake.edu.cn)

Asian Conference on Low Carbon Technology and Innovation – Zhuhai, May 28 2023

1

Greenhouse gas methane (CH₄)

Radiative forcing

Increases in last 40 years

IPCC AR6 2021

https://gml.noaa.gov/ccgg/trends_ch4/

Methane emissions in China

5

Atmospheric methane emissions

Satellite as a monitoring platform for methane emissions

Study 1: Comparison of emissions inferred from GOSAT and TROPOMI

XCH₄ observations from two different satellite instruments

Liang et al., ACP, in review https://doi.org/10.5194/acp-2022-508

TROPOMI inversion vs. GOSAT inversion

Evaluation with independent surface observations

● surface in situ ▲ surface column – airplane

XH: Minqiang Zhou (CAS) HF: Cheng Liu (USTC)

^{*}间接比较:观测2012-2014

Reasons for discrepancies

Systematic biases in satellite XCH₄ TROPOMI-GOSAT (ppb)

Concurrent TROPOMI and GOSAT observations

ppbv

Observation coverage and density

GOSAT inversion falsely attribute mismatch over Bangladesh to North India emissions

Study 2: Recent trends in China's methane emissions

Observations – satellite + surface network (2010-2017)

- GOSAT CO₂ proxy retrieval from University of Leicester
- Surface observations

Zhang et al., PNAS, 2022

Emission trend linked to energy, agricultural, environmental policy

14

Emission trend linked to energy, agricultural, environmental policy

2010-2017 rice methane trend

Mg km⁻²
$$a^{-2}$$
 -0.8 -0.4 0.0 0.4 0.8

Unexpected increase as no changes in cultivation area

- Overlap spatially with aquaculture?
- Increased intensity due to more straw return?

Data source: G. Zhang 2011; Z. Shi 2016

Summary

- High-quality ground-based observations are crucial for evaluating and improving the satellite-based monitoring system for methane.
- Regional trends linked to energy, agricultural, and environmental policies can be observed by atmospheric observations, demonstrating the usefulness for such a system to track regional methane emissions.

Acknowledgement

Shuangxi Fang Yi Lin, Yuanyuan Chen

Daniel J. Jacob

Robert Parker, Hartmut Boesch

Xiao Lu

W 西湖大學 Ruosi Liang

Joannes D. Maasakkers Alba Lorente, Ilse Aben

Jian-Xiong Sheng (MIT), Shaojie Song (Nankai), Shushi Peng (PKU), Minqiang Zhou, Pucai Wang (CAS)

Funding

National Natural Science Foundation of China

Project 42007198 Ministry of
Science and
Technology of
ChinaNNAll
P

National Key Research and Development Program of China (2020YFA0607502)